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Abstract 
 
 A computationally effective method is described to evaluate the non-deterministic dynamic instability 
(probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of 
available computer codes for finite element, composite mechanics and probabilistic structural analysis. 
The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite 
cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are 
evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific 
shell that can be used to approximate buckling loads for different load rates and different probability 
levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the 
time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity 
results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic 
load and loading rate are the dominant uncertainties in that order. 
 
 

Introduction 
 
 Shell structures are in general very efficient structural components for resisting combined loading 
conditions. Examples of their use are aircraft fuselages, submarine hulls and space launch vehicles and 
many others for transportation and storage. Cylindrical shells made from composites utilize composites 
most effectively. Thin shells are susceptible to buckling when subjected to compressive static loads. In 
more aggressive loading environments, they may also be subjected to dynamic or time dependent loads. 
Predicting the resistance of thin shells to buckling is a rather difficult task because of the simplifying 
assumptions that need to be made in order to obtain results that may be representative of the physical 
situation. The advent of the finite element method has overcome many of the difficulties associated with 
the shell boundary conditions, loadings and geometric configuration. The finite element method has also 
made possible the evaluation of the buckling load of thin composite shell under dynamic loading.  
 These predictions are generally obtained by assuming that all the values of the variables associated 
with the buckling of composite shell are fixed and neglect any variability. For more realistic predictive 
values, it is important to account for variations of those variables. One way to account for the variability 
is to perform probabilistic evaluation of dynamic buckling. Deterministic evaluation of the buckling of 
composite shells has been recently performed as described in reference 1, where relevant references are 
also cited. Probabilistic buckling of composite shell has been evaluated as described in reference 2. 
However, probabilistic evaluation of the dynamic buckling of shells has not been performed as of this 
writing. Therefore, the objective of this investigation is to describe one approach that has been 
successfully used to perform probabilistic dynamic buckling of composite shells. A secondary specific 
objective and centerpiece to the approach was to use conventional finite elements, available composite 
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mechanics and elementary probabilistic methods. In essence, the approach consists of the judicious 
combination and use of all three and coupled with incremental updated Lagrangian solution algorithm. 
This is done in an incremental fashion starting with t=0 with the first load increment. In subsequent time 
increments, the geometry, properties and responses are updated by using local iteration for global 
structural convergence. The process is repeated until the applied load is reached. The emphasis of the 
investigation was on developing the method and demonstrating its effectiveness by using a cylindrical 
composite thin shell. The authors recognize that the how part of the solutions is not unique and that other 
methods could be used. The authors� objective was to develop a method that is generic and not restrictive 
to any class of problems or conditions. The authors believe that the method developed and described 
meets and perhaps exceeds those objectives.  
 
 

Fundamental Considerations 
 
 The governing equation for dynamic structural response in matrix form is 
 
 [ ]{ } [ ]{ } [ ]{ } { })(u tFuKuCM =++ &&&  (1) 
 

where M is the mass; C is the damping; K is the stiffness and F is the forcing function; u&&  is the 
acceleration, u&  is the velocity and u  is the displacement. Equation (1) is of generic form and represents 
the single or multi-degrees of freedom structures. Dynamic buckling is obtained by solving equation (1) as 
a linear eigen value problem or as a large displacement amplitude problem by using the updated 
Lagrangian method. Available structural analysis finite element computer codes/programs have both 
options (ref. 3). The linear eigen value approach is usually referred to as the frequency domain. The large 
amplitude is usually referred to as the time domain. The approach (method) used herein and is described 
subsequently uses combinations of both. The usual approach for the frequency domain is to assume a 
transcendental function for the displacements; substitute those displacements in equation (1) and then 
solve it by the use of various eigen values extraction routines (ref. 3). In the time domain the usual 
approach is to express the displacements in equation (1) in finite difference form and then solve the 
equation by incrementing the time. In this approach, updates for material properties, temperature changes, 
geometric deformations and structural damage are readily incorporated as they occur in time. This 
approach is often referred to as the updated Lagrangian, as was mentioned earlier. A combined capability 
of at least multidisciplinary composite mechanics, dynamic structural analysis and probabilistic simulation 
methods are needed to evaluate probabilistic dynamic buckling of composite shell structures. The one 
used for this investigation is called EST/BEST for Engine Structures Technology/Benefits ESTimator 
(ref. 4). It is noted that EST/BEST consists of discipline modules which are integrated into a stand-alone 
computer program by soft coupling. The modules that were used to evaluate the probabilistic structural 
dynamic buckling of composite shells will be described as each of these modules is used in the evaluation. 
 
 

Deterministic Dynamic Buckling of a Composite Shell 
 
 
 The specific shell evaluated is depicted schematically in figure 1 where the material and loading 
conditions are also shown. The undampened version of equation (1) can be expressed as follows: 
 

  { } [ ] { })(u
1

tFM −
=&&   (2) 

{ } { }uu &&& T∆=  ; { } { }uT &&∆= 2u  
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 Equation (2) expresses the dynamic equilibrium requirements of the structure at each time increment. 
At the end of each time increment: (1) equilibrium is attained by local iteration, and (2) the structural 
geometry is updated to include displacements that are caused by the imposed dynamic loading. The 
results obtained from solving the undampened version of equation (1) at t = 0 by direct time integration 
are shown in figure 2 for loaded-end axial acceleration; in figure 3 for the corresponding velocity; and in 
figure 4 for the corresponding incremental displacement. It is instructive to examine the results shown in 
figures 2 to 4. There is considerable fluctuation in the acceleration from about �150 000 to 
300 000 in./sec2 initially and decreases monotonically with time to near zero. The only explanation at this 
time about the intermediate fluctuations is interactions with either radial or circumferential acceleration 
responses. The velocity plotted in figure 3 is also oscillatory varying from about 5 to <50 in./sec initially. 
The velocity is smooth compared to the acceleration and appears to approach a value of 25 in./sec. The 
incremental end displacement (axial shell shortening) plotted in figure 4 is also oscillating from 0.004 to 
0.01 in. The oscillatory behavior is more predominant at early times as can be seen in figure 5 it decays 
very rapidly approaching a value of about 0.007 in. The effects of the total time for the same total load 
are evident in figure 5 where the two rates differ by 1 decade. 
 The dynamic buckling load is obtained at each time step by first satisfying equation (1), including 
iteration when necessary, and then solve for the buckling load from the equation: 
 
 [ ] [ ]{ }( ) { }uutFK λ 2)( =−  (3) 
 
where equation (3) is solved by available eigen value extraction routines in conventional structural 
analysis computer codes, such as IPACS (ref. 5) module. The buckling load predicted by using 
equation (3) versus incremented dynamic load is shown in figure 6. As can be seen, the dynamic buckling 
load decreases monotonically approaching asymptotically a value that is about 30 percent of the static 
value (at t = 0). The time dependent dynamic buckling load and applied dynamic load are plotted in 
figure 7. The plot shows that the shell-buckling load decreases as the dynamic load increases. The graph 
in figure 7 suggests that superimposing the increasing dynamic force in the same graph with the dynamic 
buckling load, the dynamic buckling load can be determined from the intersection of the two curves. This 
is illustrated graphically in figure 7. The authors consider the results in figure 7 as demonstration of a 
straightforward procedure to evaluate dynamic buckling loads of composite shell structures by using 
available general purpose structural analysis, finite element and composite mechanics computer codes. 
The approach is not limited to linearly incremented dynamic loads, although the authors have not checked 
it for nonlinearly incremented loads or for �suddenly� (t≈0) loads. The corresponding buckled shapes of 
the shell are shown in figure 8(a) for the static load and in figure 8(b) for the dynamic load prior to ply 
failures. It is interesting to observe that the buckled shape of the shells is about the same, relative to the 
number of waves especially around the circumferences. The amplitudes are different, as would be 
expected. The other notable observation in figure 8 is that most of the buckled activity dominates the 
middle part of the shell. It is seen from equation (3) that a shell-buckling load exists for any dynamic load 
magnitude greater than zero. In the next section, the computer code used for the probabilistic dynamic 
buckling analysis is described in some details.  
 
 

Description of the Ipacs Computer Code 
 
 The probabilistic dynamic buckling analysis is performed using the integrated probabilistic 
assessment of composite structures computer code IPACS (refs. 5 and 6). With the direct coupling of 
composite mechanics, including interply and intraply hybrids using the integrated composite analyzer 
computer code ICAN (ref. 7), finite element structural analysis MHOST (ref. 8), and probabilistic 
methods, IPACS is capable of simulating uncertainties in all inherent scales of the composite, from 
constituent materials to the composite structure and its loading conditions. The evaluation process starts 
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with the identification of the primitive variables at the micro and macro composites scales including 
fabrication. These variables are selectively perturbed in order to generate a database for the determination 
of the relationships between the desired materials behavior and/or structural response and the primitive 
variables.  
 The composite micro-mechanics is used to carry over the scatter in the primitive variables to the ply 
and laminate scales (steps A and B in fig. 9). Laminate theory is then used to determine the scatter in the 
material behavior at the laminate scale (step C). This step leads to the perturbed resultant force/moment-
displacement/curvature relationships used in the structural analysis. Next, the finite element analysis is 
performed to determine the perturbed structural responses corresponding to the selectively perturbed 
primitive variables (step D). This completes the description of the hierarchical composite 
material/structure synthesis shown on the left side of figure 9. The multi scale progressive decomposition 
of the structural response to the laminate, ply, and fiber-matrix constituent scales is shown on the right 
side of figure 9 (steps E to G). After the decomposition, the perturbed fiber, matrix, and ply stresses can 
be determined. An important feature of IPACS, depicted at the bottom of figure 9, is the nonlinear 
multifactor interaction model for computing the fiber-matrix constituent material properties, including the 
effects of the prevailing service environments.  
 Next, the fast probability integrator (FPI) (ref. 9) code is used to determine the functional relationship 
between the response and the primitive variables. The cumulative distribution function of the response is 
then calculated with the numerically determined functional relationship and the known probability 
density functions of the primitive variables. The sensitivity factors of the primitive variables to each 
response�s cumulative probability are also determined. This information is crucial for the reliability 
assessment.  
 
 

Probabilistic Dynamic Buckling of a Composite Shell 
 
 The probabilistic evaluation of the composite cylindrical shell was performed by using an integrated 
computer code (IPACS) Integrated Probabilistic Assessment of Composite Structures (refs. 5 and 6). The 
information in table 1 is used as input to IPACS computer code. With available standard deviations for 
the various primitive variables, the coefficient of variation (COV) was determined by dividing the 
standard deviation by the mean. The probabilistic composite mechanic module generates the properties at 
each node of the finite element model of the structure. This information is used by probabilistic 
composite mechanics to generate 42 probabilistic variable properties that are needed to probabilistically 
describe the composite laminate at each finite element node. The probabilistic variables include fiber and 
matrix properties, and fabrications variables. These properties are subsequently combined with the 
structural probabilistic information to probabilistically describe the composite shell as shown at the top of 
figure 9. 
 The cumulative probability distribution function generated IPACS of the dynamic buckling load is 
plotted in figure 10. The comparable static buckling load is also shown in figure 10 for comparison 
purposes. As can be observed, at 50 percent probability, the probability dynamic buckling load is about 
one-half of the static buckling load as would be expected from equation (3). It is also observed that the 
dynamic buckling load at 0.5 probability is the same as that in figure 8(b), as should be since both are 
obtained by using the mean values of the input data. Another observation in figure 10 is that the dynamic 
buckling load of the shell may vary from about 700 kips at very low probability to about 3000 for high 
probability. This is a very large variation and may indicate the difficulty of evaluating dynamic buckling 
loads experimentally. 
 The corresponding sensitivities of the factors affecting buckling loads for 1/1000 and 999/1000 are 
shown in figure 11 for static buckling load and in figure 12 for dynamic buckling load. Comparing these 
two figures, it is seen that the dynamic load affects the shell buckling load while the static load does not. 
The shell geometry (length, radius and the laminate configuration) has negligible effects while the ply 
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(shell) thickness and the fiber volume ratio have major effects. Note that the sensitivity of the ply 
thickness is increased at high probability (about 15 percent) compared to that at low probability. The 
sensitivity of the fiber volume ratio is decreased at high probability. The changes in the sensitivity are 
attributed to the fact that the buckling load is more sensitive to the shell thickness than to fiber volume 
ratio. Therefore, when buckling is likely to occur, the ply thickness effect is increased as compared to that 
of the fiber volume ratio. The deformed shell shapes at those three probabilities are plotted in figure 13 
for the dynamic case. The shapes appear to be the same but with different displacement amplitudes, as 
those in figure 8.  
 The dynamic end accelerations are plotted in figure 14 for the three different probabilities; in 
figure 15 for the velocities, and in figure 16 for the displacements. As expected and as mentioned 
previously, the amplitudes of these responses are smaller for the larger probabilities since they represent a 
stiffer shell for the same load. Note in figure 14 the same fluctuations that were observed in figure 2. 
 A universal plot can readily be developed for the probabilistic buckling load for a specific shell but 
subjected to different dynamic loading rates and at different probability levels. This type of plot is 
illustrated in figure 17. The loading increments are equal resulting in linear dynamic load rate. They can 
just as easily be unequal and thereby accommodate a variety of rates. Note that the two different rates 
4000 kips and 2000 kips are at 0.5 probability. The higher rate increases the buckling load and occurs at a 
shorter time. The lower rate decreases the buckling load and occurs at a longer time. 
 The afore-discussion leads to the conclusion that probabilistic dynamic buckling of composite shell 
structures can be evaluated by a capability that integrates (1) dynamic structural analysis, (2) composite 
mechanics, and (3) probabilistic concepts. As was demonstrated in the probabilistic evaluation for the 
dynamic buckling of a composite shell, that capability appears to be sufficient and efficient since it relies 
on proven and readily available methods. 
 
 

Summary of Results 
 
 The salient results of an investigation to develop an effective method for the probabilistic dynamic 
buckling of thin composite shells are as follows: (1) The method was developed and consists of the 
judicious combination of conventional finite element method, available composite mechanics, elementary 
probabilistic mechanics and incrementally updated Lagrangian solution algorithm; (2) The method is 
generic and not restricted to any special class of shells and/or loading conditions; (3) The effectiveness of 
the method is demonstrated to evaluate the probabilistic dynamic buckling load of a specific thin 
composite shell; (4) Typical results obtained include deterministic and probabilistic dynamic buckling, 
buckling modes, affects of uncertainties and respective sensitivities; (5) A universal plot is developed 
which shows the buckling load at different probability levels and at different loading rates; and (6) The 
authors consider the method easy to apply and to their knowledge the first of its kind. 
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Figure 1. Buckling of a Clamped-Clamped Composite Shell Subject to  
 Dynamic Compressive Axial Loading 
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Table 1. Probabilistic Dynamic Buckling of a Composite Shell 

Primitive Variables, Scatter, Standard Deviation and Distribution 
 
Primitive Variable   Low Mean High     Coefficient     Standard Probabilistic

                  of Variation    Deviation Distribution 
Fiber Volume Ratio  0.585 0.65 0.715 ±10%        0.065 Normal  
Void Volume Ratio   0.0425 0.050 0.0575 ±15%        0.0075 LogNormal 
Outer Ply Angle (45°)   42.0 45.0 48.0 ±6.66%        3.0   Normal 
Outer Ply Angle (-45°)  -42.0      -45.0        -48.0 ±6.66        3.0   Normal 
Outer Ply Angle (0°)  -3.0 0.0 3.0 ±3.0%        3.0   Normal 
Outer Ply Angle (90°)  87.0 90.0 93.0 ±3.33%        3.0   Normal 
Ply Thickness (in.)   0.0045     0.005 0.0055 ±5%        0.00025 LogNormal 
Fiber Modulus Ef11 (msi)  26.35  31.0  35.65 ±5%        1.55  Normal 
Fiber Shear Modulus Gf12 (msi) 1.8 2.0  2.2 ±10%        0.20   Normal  
Matrix Modulus Em (msi)  0.45 0.50 0.550 ±10%        0.05  Normal  
Fiber Density (lb/in3)  0.0567 0.0630 0.0693 ±10%        0.0063 LogNormal 
Matrix Density (lb/in3)  0.03987 0.0443 0.04873 ±10%        0.00443 LogNormal 
Loading Rate (sec)                  2.375E-4 2.5E-4   2.625E-4  ±5%        1.25E-5 LogNormal 
Initial Dynamic Load (kips)  18.0 20.0 22.0 ±10%        2.0  Normal  
Length (in.)   59.0 60.0 61.0 ±1.67%        1.0  Normal  
Diameter (in.)   29.5 30.0 30.50 ±1.67%        0.50  Normal  
 
Graphite Epoxy Composite: [(45,-45,0,90)7,-45,45] 
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Figure 2. End Acceleration of a Composite Shell Due to Dynamic Compressive Loading 
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Figure 3. End Velocity of a Composite Shell Due to Dynamic Compressive Loading 
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Figure 4. End Displacement of a Composite Shell Due to Dynamic Compressive Loading
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Figure 5. Effect of Loading Rate on the Incremental End Displacement of a Composite Shell 
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Figure 6. Effect of Dynamic Load on the Buckling Load of a Composite Shell  
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Figure 9. Modular Chart for the IPACS Computer Code

Figure 8. First Buckling Mode Shape of a Composite Shell � Static and Dynamic 
(With Compressive Axial Loading) 
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Figure 10. Probabilistic Evaluation of Static and Dynamic Buckling Loads of a Composite Shell 
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Figure 11. Probabilistic Sensitivities of the Buckling Load of a Composite Shell � Static 
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Figure 12. Probabilistic Sensitivities of the Buckling Load of a Composite Shell � Dynamic  

Fabrication Variables Property Variables Geometry/Load Variables

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fibe
r V

olu
me R

ati
o

Void
 V

olu
me R

ati
o

45
 D

eg
 P

ly 
Ang

le 

-45
 D

eg
 Ply 

Ang
le 

0 D
eg

 Ply 
Ang

le

90
 D

eg
 P

ly 
Ang

le

Ply 
Thic

kn
es

s

Fibe
r L

on
git

ud
ina

l M
od

ulu
s E

f11

Fibe
r S

he
ar 

Mod
ulu

s G
f12

 

Matr
ix 

Mod
ulu

s E
m 

Fibe
r D

en
sit

y 

Matr
ix 

Den
sit

y 

Lo
ad

ing
 R

ate
 

Dyn
am

ic 
Lo

ad
 

She
ll L

en
gth

She
ll D

iam
ete

r 

Se
ns

iti
vi

ty
 0.001 probability

 0.999 Probability
Mean Ply Thickness: 0.005" 
Mean Time Step = 0.00025 sec
Probabilistic Analysis Performed at 0.01925  
sec
Total Time = 0.050 Sec 

`

Fabrication Variables Property Variables Geometry/Load Variables

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fibe
r V

olu
me R

ati
o

Void
 V

olu
me R

ati
o

45
 D

eg
 P

ly 
Ang

le 

-45
 D

eg
 Ply 

Ang
le 

0 D
eg

 Ply 
Ang

le

90
 D

eg
 P

ly 
Ang

le

Ply 
Thic

kn
es

s

Fibe
r L

on
git

ud
ina

l M
od

ulu
s E

f11

Fibe
r S

he
ar 

Mod
ulu

s G
f12

 

Matr
ix 

Mod
ulu

s E
m 

Fibe
r D

en
sit

y 

Matr
ix 

Den
sit

y 

Lo
ad

ing
 R

ate
 

Dyn
am

ic 
Lo

ad
 

She
ll L

en
gth

She
ll D

iam
ete

r 

Se
ns

iti
vi

ty
 0.001 probability

 0.999 Probability
Mean Ply Thickness: 0.005" 
Mean Time Step = 0.00025 sec
Probabilistic Analysis Performed at 0.01925  
sec
Total Time = 0.050 Sec 

`

Figure 13. First Buckling Mode Shape of a Composite Shell � Probabilistic Dynamic 
(With Compressive Axial Loading � Time of Occurrence 0.01925 sec, Total Time = 0.05) 
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Figure 14. Probabilistic End Acceleration of a Composite Shell (With Dynamic Loading) 

Figure 15. Probabilistic End Velocity of a Composite Shell (With Dynamic Loading)
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Figure 16. Probabilistic End Displacement of a Composite Shell (With Dynamic Loading) 

Figure 17. Graphical Estimation of the Probabilistic Dynamic Buckling Load of a Composite Shell  
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